Class ClassicalRungeKuttaIntegrator
java.lang.Object
org.apache.commons.math3.ode.AbstractIntegrator
org.apache.commons.math3.ode.nonstiff.RungeKuttaIntegrator
org.apache.commons.math3.ode.nonstiff.ClassicalRungeKuttaIntegrator
- All Implemented Interfaces:
FirstOrderIntegrator
,ODEIntegrator
This class implements the classical fourth order Runge-Kutta
integrator for Ordinary Differential Equations (it is the most
often used Runge-Kutta method).
This method is an explicit Runge-Kutta method, its Butcher-array is the following one :
0 | 0 0 0 0 1/2 | 1/2 0 0 0 1/2 | 0 1/2 0 0 1 | 0 0 1 0 |-------------------- | 1/6 1/3 1/3 1/6
- Since:
- 1.2
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionprivate static final double[][]
Internal weights Butcher array.private static final double[]
Propagation weights Butcher array.private static final double[]
Time steps Butcher array.Fields inherited from class org.apache.commons.math3.ode.AbstractIntegrator
isLastStep, resetOccurred, stepHandlers, stepSize, stepStart
-
Constructor Summary
Constructors -
Method Summary
Methods inherited from class org.apache.commons.math3.ode.nonstiff.RungeKuttaIntegrator
integrate, singleStep
Methods inherited from class org.apache.commons.math3.ode.AbstractIntegrator
acceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCounter, getCurrentSignedStepsize, getCurrentStepStart, getEvaluations, getEvaluationsCounter, getEventHandlers, getExpandable, getMaxEvaluations, getName, getStepHandlers, initIntegration, integrate, sanityChecks, setEquations, setMaxEvaluations, setStateInitialized
-
Field Details
-
STATIC_C
private static final double[] STATIC_CTime steps Butcher array. -
STATIC_A
private static final double[][] STATIC_AInternal weights Butcher array. -
STATIC_B
private static final double[] STATIC_BPropagation weights Butcher array.
-
-
Constructor Details
-
ClassicalRungeKuttaIntegrator
public ClassicalRungeKuttaIntegrator(double step) Simple constructor. Build a fourth-order Runge-Kutta integrator with the given step.- Parameters:
step
- integration step
-