Macaulay2 » Documentation
Packages » PencilsOfQuadrics :: CliffordModule
next | previous | forward | backward | up | index | toc

CliffordModule -- hash table holding details of a Clifford module

Description

the keys are oddOperators => uOdd', evenOperators => uEv', evenCenter=>c0', oddCenter => c1', symmetricM => Q, hyperellipticBranchEquation => f

See also

Functions and methods returning an object of class CliffordModule:

Methods that use an object of class CliffordModule:

  • cliffordModuleToCIResolution(CliffordModule,Ring,Ring) -- see cliffordModuleToCIResolution -- transforms a Clifford module to a resolution over a complete intersection ring
  • cliffordModuleToMatrixFactorization(CliffordModule,Ring) -- see cliffordModuleToMatrixFactorization -- reads off a matrix factorization from a Clifford module
  • randomIsotropicSubspace(CliffordModule,PolynomialRing) -- see randomIsotropicSubspace -- choose a random isotropic subspace
  • searchUlrich(CliffordModule,Ring) -- see searchUlrich -- searching an Ulrich module of smallest possible rank, or an Ulrich module of given rank.
  • searchUlrich(CliffordModule,Ring,ZZ) -- see searchUlrich -- searching an Ulrich module of smallest possible rank, or an Ulrich module of given rank.
  • tensorProduct(CliffordModule,VectorBundleOnE) -- see tensorProduct -- tensor product of sheaves on the elliptic curve or sheaf times CliffordModule
  • translateIsotropicSubspace(CliffordModule,VectorBundleOnE,PolynomialRing) -- see translateIsotropicSubspace -- choose a random isotropic subspace

For the programmer

The object CliffordModule is a type, with ancestor classes MutableHashTable < HashTable < Thing.


The source of this document is in PencilsOfQuadrics.m2:2085:0.